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Nonsense-mediated mRNA decay (NMD) was originally coined to define a qual-
ity control mechanism that targets mRNAs with truncated open reading frames
due to the presence of a premature termination codon. Meanwhile, it became
clear that NMD has a much broader impact on gene expression and additional
biological functions beyond quality control are continuously being discovered.
We review here the current views regarding the molecular mechanisms of NMD,
according to which NMD ensues on mRNAs that fail to terminate translation
properly, and point out the gaps in our understanding. We further summarize
the recent literature on an ever-rising spectrum of biological processes in which
NMD appears to be involved, including homeostatic control of gene expression,
development and differentiation, as well as viral defense. © 2016 The Authors. WIREs
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INTRODUCTION

More than 30 years ago, it was discovered that
mutations terminating the open reading frame

(ORF) prematurely reduce the half-life of the affected
messenger RNA (mRNA) in yeast and human cells.1,2

In 1993, Peltz et al. introduced the term ‘nonsense-
mediated mRNA decay’ (NMD) to describe this phe-
nomenon.3 Thus, in these early days, NMD was
essentially defined by the substrates of the process: it
stood for the specific degradation of mRNAs harbor-
ing premature termination codons (PTCs) and hence
NMD was viewed as a quality control mechanism
that prevents cells from producing potentially delete-
rious truncated proteins. While it is clear that quality
control of gene expression is indeed one biological
function of NMD, the classical definition has chan-
ged during the last 10 years, as genome-wide studies

revealed that the stability of many apparently ‘nor-
mal’ mRNAs (i.e., encoding a functional, full-length
protein) was also altered by NMD.4–13 NMD directly
or indirectly influences the steady-state levels of
approximately 10% of mRNAs in mammalian cells
thereby making a significant contribution to the post-
transcriptional regulation of gene expression. We
have only just begun to identify the biological func-
tions and pathways that are regulated by NMD and
the overall importance of NMD in regulating gene
expression is not yet clear. The first insights into dif-
ferent biological functions of NMD are summarized
in the second part of this review. Interestingly, there
exists a correlation between the complexity of an
organism and its dependency on NMD: while NMD
is essential in vertebrates,14,15 NMD-deficient Cae-
norhabditis elegans exhibit a vulva malformation
phenotype but remain fertile, and NMD-deficient
Saccharomyces cerevisiae strains grow well under
laboratory conditions.

Despite the plethora of available biochemical
data that have been comprehensively summarized in
recent reviews, the molecular mechanism of NMD
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still remains elusive and we will discuss several
models that have been proposed based on data
from different organisms. While these models differ
in several aspects, they all agree that NMD depends
on translation. Translation inhibitors (e.g., cyclo-
heximide, emetine, and puromycin) and extended
stem–loops in the 50 UTR that inhibit translation
initiation both effectively inhibit NMD.16,17 The
finding that even PTC-free mRNAs can be degraded
by NMD revitalized a central question that is cur-
rently under intensive investigation: what deter-
mines whether an mRNA becomes a substrate for
NMD? Moreover, the PTC-centric definition of
NMD became obsolete and based on the current
mechanistic models, which we discuss in the first
part of this review, NMD can currently be defined
as an mRNA degradation pathway that requires a
number of well-characterized NMD factors (see
below) and targets transcripts that fail to properly
terminate translation at their stop codons. But
before immersing ourselves in the discussion of dif-
ferent NMD models, we need to first get familiar
with the involved NMD effectors.

NMD FACTORS

Genetic screens in S. cerevisiae led to the identifica-
tion of the first three NMD factors called up-
frameshift (Upf ) 1, 2, and 318 and genetic screens in
C. elegans for suppressors with morphogenetic effects
on genitalia (SMG) revealed seven NMD effectors
(SMG-1 to SMG-7).19 SMG-2, SMG-3, and SMG-4
turned out to be homologous to the yeast factors
Upf1, Upf2, and Upf3, respectively, and they consti-
tute the evolutionarily conserved core set of NMD
factors that is present in all late-branching eukar-
yotes.20 In contrast, homologs of SMG-1, SMG-5,
SMG-6, and SMG-7 are only found in metazoans
(Figure 1).

UPF1 is a monomeric, highly regulated super-
family 1 (SF1) helicase that is essential for NMD in
all eukaryotes. Its central helicase domain is com-
posed of two flexible RecA domains with the ATP-
binding site located in the cleft between the two
domains.21 The helicase domain binds single-
stranded RNA and DNA and elegant in vitro experi-
ments using magnetic tweezers recently revealed that
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FIGURE 1 | Schematic illustration of domains and motifs of important mammalian NMD factors. Amino acid numbering relates to the human
proteins. All proteins are drawn to the same scale except for SMG1. CH: cysteine-histidine rich domain; SQ: serine-glutamine rich domain; MIF4G:
middle of 4G-like domains; UBD: UPF1-binding domain; RRM: RNA recognition motif; EBM: exon junction binding motif; HEAT: Huntingtin,
elongation factor 3 (EF3), protein phosphatase 2A (PP2A), yeast kinase TOR1 domain; FAT: focal adhesion kinase domain; PIKK:
phosphatidylinositol 3-kinase-related protein kinase domain; FATC: C-terminal FAT domain; PIN: PilT N-terminus domain; PC: C-terminal proline-
rich region.
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UPF1 has the ability to translocate on nucleic acids
slowly but very processively and to unwind long
double-stranded structures.22 Its affinity for RNA is
lower in the ATP-bound state23,24 and the ATPase
and helicase activity is essential for NMD in both
S. cerevisiae and humans.25,26 The central helicase of
UPF1 is flanked by a conserved N-terminal domain
rich in cysteine and histidine (CH) and a serine- and
glutamine-rich (SQ) C-terminal domain, which in
metazoans gets phosphorylated by SMG1 at multiple
SQ motifs.27 The CH and SQ domains both suppress
UPF1’s helicase activity in vitro28 and UPF2 interac-
tion with the CH domain induces a large conforma-
tional change in UPF1, which is a prerequisite for its
phosphorylation and promotes the ATPase and heli-
case activity of UPF1.21,29–32 The link between UPF1
phosphorylation and its helicase activity is currently
not understood, but likely constitutes a central aspect
of NMD activation.

UPF2, the second core NMD factor, functions
as a ring-like scaffold linking UPF1 and UPF3.29,33,34

The UPF2 protein consists of three middle portion of
eIF4G (MIF4G) domains with the first two domains
providing structural support35 and the third domain
interacting with UPF3B.36 A highly conserved por-
tion of the first MIF4G domain was recently shown
to be essential for NMD in yeast.37 UPF1 interacts
with the C-terminal part (UBD) of UPF2.38

UPF3 is the least conserved of the three core
NMD factors.39 Vertebrates contain two UPF3 para-
logs, UPF3A and UPF3B, which in humans both
encode to alternatively spliced mRNA isoforms. In
human cells, UPF3B appears to be the main contribu-
tor to NMD and only upon UPF3B depletion, UPF3A
is stabilized and substitutes for 3B in NMD.40,41

UPF3 contains an N-terminal RNA recognition motif
(RRM) that contrary to expectation does not bind
RNA but instead is the interaction surface to
UPF2.36 Through a short motif in the C-terminus
(called the EJC-binding motif; EBM), vertebrate
UPF3 interacts with the EJC core factors eIF4A3,
MAGOH, and Y14.29,42 UPF3 is a shuttling protein
that at steady state is found primarily in the
nucleus,38 where it is thought to associate with the
EJCs deposited on the newly spliced mRNAs. Like
UPF2, UPF3 has also been shown to stimulate the
ATPase and helicase activity of UPF1 in vitro.29

The metazoan-specific SMG1 complex consists
of the phosphatidylinositol 3-kinase-related kinase
SMG1, which is responsible for UPF1 phosphoryla-
tion, and the two regulatory factors SMG8 and
SMG9, which interact with SMG1’s N-terminal
extended stretch of HEAT repeats and confine SMG1
in a kinase inactive conformation.27,43–45 The

C-terminus of SMG1 encompasses the catalytic PIKK
domain flanked by an FRB (FKBP12-rapamycin-bind-
ing) domain and two FAT domains and forms the
globular ‘head’ region, while the N-terminal HEAT
repeats are included in the ‘arm’ region.32,43,46 Upon
dissociation of SMG8 and SMG9 from SMG1, the
kinase is activated by the third MIF4G domain of
UPF2 interacting with the FRB domain of SMG1 and
by the helicase domain of UPF1 interacting with a
region proximal to the FRB domain.32

SMG5, SMG6, and SMG7 all contain a domain
formed by nine antiparallel α helices that fold simi-
larly to 14-3-3 proteins.47 The 14-3-3-like domains
of SMG5 and SMG7 interact with each other back-
to-back in a perpendicular orientation48 and as a het-
erodimer interact with phosphorylated S1096 and
additional phosphorylated residues in the C-terminus
of UPF1.49,50 SMG5 and SMG7 co-
immunoprecipitate protein phosphatase 2A (PP2A)
and thus are thought to play a role in the depho-
sphorylation of UPF1.49,50 The C-terminal portion of
SMG7 was recently shown to recruit the CCR4-
NOT deadenylase complex by interacting with
CNOT8 (POP2),51 providing a molecular link to
RNA degradation. In contrast to the SMG5–SMG7
heterodimer, SMG6 appears to function as a mono-
mer. Like SMG5, it contains a C-terminal PIN
domain folded similarly to the RNase H family ribo-
nucleases, but unlike SMG5, which lacks the canoni-
cal motif of three aspartic acid residues essential for
ribonuclease activity,52 the PIN domain of SMG6 is
an active endonuclease.53,54 Accordingly, SMG6-
dependent endonucleolytic mRNA cleavage in the
vicinity of NMD-triggering termination codons (TCs)
has been reported in Drosophila and human
cells.53,55–57 While these studies did not reveal a pre-
ferred cleavage sequence for SMG6, an additional
recent genome-wide analysis of SMG6- and UPF1-
dependent 50 termini of decay intermediates found
the pentameric (U/A)-(G/A)#(A/C)-N-(C/U) motif in
>60% of the detected cleavage sites.58 SMG6 associ-
ates with UPF1 in a phosphorylation-dependent and
in a phosphorylation-independent way. The former
interaction involves the phospho-T28 of UPF1,50 and
the latter occurs between a low-complexity region of
SMG6 located just N-terminal to the 14-3-3-like
domain and the unique stalk region of the UPF1 heli-
case domain plus a contribution from the C-terminal
SQ portion.59,60 At its very N-terminus, SMG6 has
two conserved EBMs through which it interacts with
the EJC.61 Notably, not all metazoans possess the full
SMG5/6/7 trio: Drosophila melanogaster lacks a
SMG7 homolog and plants have two nonredundant
SMG7 genes, but no SMG5 and SMG6.
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Besides these well-characterized NMD factors,
several additional factors required for NMD have
been identified using RNA interference (RNAi)
screens in C. elegans.62,63 Among those, DHX34,
NBAS, GNL2, and SEC13 also seem to be required
for NMD in human cells. DHX34 and NBAS are
highly conserved among metazoans and part of an
autoregulatory circuit that regulates endogenous
NMD targets.64 Both proteins are required for
proper embryonic development of zebrafish and their
depletion leads to similar developmental defects as
the depletion of UPF1, SMG5, or SMG6.14,65 The
RNA-binding DExH/D box helicase DHX34 inter-
acts with NMD, decapping, and release factors, and
it promotes UPF1 phosphorylation and the interac-
tion of UPF1 with UPF2 and EJC factors.66 Based on
these results, DHX34 was proposed to function in
the conversion of the SURF to the DECID complex
(see below).

NMD TRIGGERING FEATURES

The finding that many different endogenous mRNAs
appear to be targets for NMD put the question of
substrate recognition into the limelight of current
NMD research. What are the features that distin-
guish an NMD-targeted transcript from one that
remains unaffected by NMD? In mammalian cells,
EJCs located sufficiently downstream of the TC that
they are not displaced by elongating ribosomes can
induce NMD by recruiting NMD factors to such
mRNPs.34,42,67 In addition, mRNAs with long 30

UTRs or with upstream ORFs (uORFs) are also fre-
quently targeted by NMD in mammalian as well as
in yeast cells.7,13,68–71 However, it is currently not
possible to predict which transcripts will be subjected
to NMD and which ones remain intact based on
sequence features. In fact, many mRNAs with long 30

UTRs are resistant to NMD13,56,72,73 and not all
uORFs or PTCs trigger NMD.73 For a subset of the
NMD-insensitive transcripts with long 30 UTRs, AU-
rich sequences located within the first 200 nucleotides
downstream of the TC have been recently shown to
confer NMD resistance.74 Another well-characterized
NMD-inhibiting sequence is the retroviral RNA sta-
bility element (RSE) of the Rous sarcoma virus
(RSV), which is located downstream of the TC of the
Gag gene and protects the unspliced viral transcript
from being degraded by NMD.75 The RSE has
recently been shown to interact with the polypyrimi-
dine tract-binding protein 1 (PTBP1), which sup-
presses NMD by sterically blocking access of UPF1
to this region.76

CURRENT WORKING MODEL
FOR NMD

Despite intensive research over the last two decades
that produced a wealth of biochemical and genetic
data, our insights into the molecular mechanism of
NMD still remain fragmented. Several different
NMD models have been proposed and revised over
the years and we will describe here a current working
model that is based on the pooled data of many dif-
ferent groups and to which we refer as the ‘unified
model’ (Figure 2). In its most condensed form, the
model posits that NMD results from aberrant trans-
lation termination.77–80 Increased toe-print signals at
NMD-triggering TCs observed in yeast extracts81

and rabbit reticulocyte lysate82 indicated that ribo-
somes reside longer at such TCs, which implies mech-
anistic differences to the faster termination process at
normal TCs.

When a ribosome arrives at a TC, the tRNA-
shaped eukaryotic release factor 1 (ERF1) together
with GTP-bound ERF3 binds the A-site of the ribo-
some. GTP hydrolysis then leads to the dissociation
of ERF3, which is followed by the interaction of the
termination factor ABCE1 (Rli1 in yeast) with
ERF1.83,84 An ABCE1-induced structural rearrange-
ment in ERF1 orients the highly conserved GGQ
loop of ERF1 toward the peptidyltransfer center,
stimulating the release of the polypeptide chain from
the P-site bound tRNA.85 The ATPase activity of
ABCE1 subsequently triggers the dissociation and
recycling of the two ribosomal subunits.83,84,86 In
contrast to bacteria, translation termination and
ribosome recycling appear to be mechanistically
coupled in eukaryotes.87 Importantly with regard to
the NMD model, the C-terminal part of poly(A)-
binding protein (PABPC1 in mammals, Pab1 in
yeast) interacts with ERF388–91 and PABPC1 can
antagonize NMD when tethered downstream of oth-
erwise NMD-triggering TCs,69,71,81,92–94 suggesting
that PABPC1 promotes correct translation termina-
tion.95 However, how exactly PABPC1 contributes
to translation termination is not yet known. In addi-
tion, UPF1 has also been reported to interact with
ERFs31,93,96 and there is evidence that in vitro
PABPC1 competes with UPF1 for binding ERF3,71

implying that the difference between correct and
aberrant, NMD-eliciting translation termination
might ultimately rely on whether PABPC1 or UPF1
interacts with ERF3 at the terminating ribosome.97

Although recent evidence suggests that this ‘UPF1
versus PABPC1 competition model’ might be
oversimplified,98–100 it is consistent with the majority
of the available experimental data.
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Open Questions Regarding the Role of
UPF1 in Determining NMD Targets
Given the evidence for UPF1’s presence at terminat-
ing ribosomes, the currently most pressing questions
are when and how UPF1 is recruited and what
exactly are the consequences of this recruitment.
Regarding the ‘when and how,’ different studies
came to controversial conclusions. On one hand,
UPF1 was found to be preferentially associated with
transcripts targeted for NMD,101–103 which sug-
gested that UPF1 recruitment to inefficiently termi-
nating mRNAs was the decisive step to subject such
mRNAs to NMD. On the other hand, UPF1 was
reported to bind 30 UTRs in a length-dependent man-
ner and independently of translation.72 Further sup-
port for UPF associating with mRNA independent of
translation came from two CLIP studies that detected
UPF1 on long noncoding RNAs and along entire
mRNAs when cells were treated with translation
inhibitors before crosslinking.73,104 In the absence of
translation inhibitors, UPF1 crosslinked primarily to
30 UTRs, implying that UPF1 binds mRNA before
translation begins and elongating ribosomes subse-
quently strip off UPF1 from the coding sequence.104

The accumulating evidence suggesting that UPF1
associates indiscriminately with NMD targets and
nontargets73,104–106 begs the question which other
step determines whether or not NMD ensues on a
given mRNA. Using an antibody that specifically
detects UPF1 phosphorylated at serine 1116, it was
shown that phospho-UPF1 preferentially co-
immunoprecipitates NMD-targeted transcripts,105

suggesting that the SMG1-mediated phosphorylation
of UPF1 might be the NMD-activating step. How-
ever, how aberrant translation termination exactly
leads to UPF1 phosphorylation in this scenario
remains a crucial unanswered question.

Although a contribution by other kinases can-
not be ruled out, SMG1 is the kinase responsible for
the phosphorylation of the numerous SQ and TQ
motifs located in the N- and C-terminal regions of
UPF1.27 Noteworthy, most of the 19 (S/T)Q sites of

human UPF1 are conserved in other vertebrates and
some of these phosphosites are involved in recruit-
ment of NMD effectors (see below).49,50 Hypopho-
sphorylated UPF1 was co-precipitated in a complex
with SMG1, ERF1, and ERF3, suggesting that this
complex might form on terminating ribosomes.31

Subsequent SMG1-mediated phosphorylation of
UPF1 appears to require a UPF2-dependent confor-
mational change to activate SMG1.32,107 Thus,
instead of UPF1, it could be that SMG1 or UPF2
preferentially associates with NMD-susceptible
mRNPs.

Alternatively to UPF1 phosphorylation being
the step discriminating between NMD targets and
nontargets, a recent study indicated that target speci-
ficity might be achieved by preferential release of
UPF1 from nontargets and that this step requires the
ATPase activity of UPF1.108 While wild-type
(WT) UPF1 co-precipitated preferentially, but not
exclusively, NMD-targeted transcripts, ATPase-
deficient UPF1 mutants co-precipitated targets and
nontargets indiscriminately. Collectively, the results
presented in this study suggested that aberrant trans-
lation termination might activate NMD by delaying
UPF1-mediated ATP hydrolysis, thereby allowing
NMD complexes to form and initiate RNA degrada-
tion. However, it is clear that subsequently during
NMD, UPF1’s ATPase is still required, because
ATPase-inactivating mutations in UPF1 completely
abolish NMD.25,31

SMG1-Mediated Phosphorylation
of UPF1
The so-called SURF complex (consisting of SMG1
and its regulators SMG8 and SMG9, hypopho-
sphorylated UPF1, ERF1, and ERF3) was shown to
interact with DHX34.66 Recent structural and bio-
chemical data indicate that DHX34 might function
as a scaffold to recruit UPF1 to SMG1.109 DHX34
further promotes the interaction of UPF2 with
UPF166 and UPF2 in turn was shown to induce a

FIGURE 2 | Nonsense-mediated mRNA decay activation and target degradation. (a) Aberrant translation termination occurs when the
termination codon (TC) is distant to the poly(A) tail. NMD licensing includes the interaction of ribosome-bound ERF3 with UPF1 instead of PABP,
and UPF1 activation relies on the recruitment of UPF2 and/or UPF3. In this model, UPF1 is proposed to initially bind mRNA nonspecifically and
interact with ERFs on aberrantly terminating ribosomes. UPF1 is activated by UPF2 and/or UPF3 (EJC-independent NMD activation). Adjacent EJCs
enhance UPF2/UPF3 recruitment and therefore facilitate NMD activation (EJC-enhanced NMD activation). (b) SMG1 kinase is activated when its
inhibitory counterparts SMG8 and SMG9 are released, which is facilitated by UPF2 and DHX34. SMG1 phosphorylates UPF1 on N- and C-terminal
Ser and Thr residues followed by Gln (S/T-Q). The helicase activity of UPF1 stimulates downstream NMD events. (c) Phosphorylated UPF1 (p-UPF1)
can promote mRNA degradation by at least three distinct mechanisms: SMG6-mediated endonucleolytic cleavage (a), recruitment of the decapping
complex (DCPC) directly by UPF1 or via PNRC2 (b), or SMG7-mediated recruitment of the CCR4-NOT complex (c). NMD-targeted mRNAs are further
degraded by general cellular exonucleolytic activities.
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large conformational change in UPF1, to stimulate
UPF1’s helicase activity, and to promote SMG1
kinase activity by dissociating SMG8 from SMG1,
finally resulting in the phosphorylation of
UPF1.21,29,32,43 The presence of an EJC complex in
the 30 UTR of a SURF-associated mRNA is thought
to greatly enhance the UPF1:UPF2 interaction by
serving as an mRNA-attached anchoring point for
the assembly of a decay-inducing NMD complex on
such transcripts.78 Using recombinant proteins, an
RNA-bound EJC core consisting of EIF4A3, Y14,
MAGOH, and a fragment of MLN51 could be
assembled into a heptameric complex with UPF3B,
UPF2, and UPF129 and structural information was
obtained by cryo-electron microscopy combined with
modeling of known high-resolution structures of sub-
complexes into the obtained electron density hull.34

Through these interactions, the EJC is thought to
enhance NMD activation, but it is important to note
that even mRNAs with no predicted EJC in the 30

UTR can be targeted by NMD, although typically
with a lower efficiency.68 It is not known when and
how in the EJC-independent mode of NMD UPF2
and UPF3B are interacting with UPF1, but it is con-
ceivable that in the absence of EJC-mediated preposi-
tioning of UPF2 and UPF3B on SURF-associated
mRNAs, UPF1 phosphorylation would take longer
to occur, thereby increasing the probability for com-
peting interactions (e.g., PABPC1 with ERF3) to pro-
mote correct translation termination and inhibit
NMD activation during this time window.110 In line
with this view, EJC-independent NMD seems to be
more sensitive than EJC-enhanced NMD to reduced
UPF2 and UPF3B concentrations.111 Interestingly,
recent findings suggest that UPF2 directly interacts
with ERF3 and the ribosome, independently of
UPF3B.112

Notably, there is evidence that under certain cir-
cumstances or on special transcripts NMD can also
occur in the absence of UPF2 or UPF3 in mammalian
cells, suggesting the existence of different branches
of the NMD pathway with differential co-factor
requirements.113–115 Based on recent findings, it is
conceivable that DHX34 could functionally substitute
for UPF2 in promoting UPF1 phosphorylation,109

but further work is needed to clarify this point.
In summary, these findings support the idea that

a kinetic competition between efficient translation ter-
mination and the assembly of a degradation-triggering
NMD complex determines whether an mRNA sur-
vives or not. Interestingly, such a kinetic competition
between correct mRNP function and RNA degrada-
tion is a recurring concept for many of the posttran-
scriptional quality control systems in cells.97,116

NMD Targets CBC- and eIF4E-Bound
Transcripts
The above-described NMD model predicts that every
ribosome reaching a stop codon can lead to NMD
activation if translation termination fails to take
place quick enough. This view however clashed with
earlier publications claiming that NMD in mamma-
lian cells could only be elicited during the very first,
the so-called pioneer round of translation or at least
that it was restricted to CBC-bound mRNAs.117

While in yeast it has been long known that NMD
targets CBC- and eIF4E-associated mRNAs
alike,118,119 it has recently been demonstrated that
the same is also true in human cells,120,121 consistent
with the prediction of the unified NMD model.

Degradation of NMD-Targeted mRNAs
Irrespectively of the exact mechanisms of NMD tar-
get identification, eventually hyperphosphorylated
UPF1 will be associated with target RNA,105 and
hyperphosphorylated UPF1 serves as the binding
platform for the NMD effectors SMG5, SMG6, and
SMG7.49,50 There is evidence that in mammals, rapid
degradation of NMD targets can be achieved
through at least two different pathways (reviewed in
Ref 80) and it is unclear if transcript-specific or cell
type-specific preferences for one or the other pathway
exist, or if they act redundantly.122

SMG6 cleaves mRNA endonucleolytically in
the vicinity of PTCs and in human cells, and the
majority of NMD targets are apparently degraded
through this pathway.53,54,56,57 The decapping-
dependent exonucleolytic pathway may function as a
backup, as it is enhanced upon SMG6 depletion.57,58

After SMG6-mediated cleavage, for which SMG6
needs to interact with UPF1,60 the 30 RNA fragment
is rapidly degraded by XRN1 and the 50 fragment
seems to be digested by the exosome.53–57

An alternative RNA decay pathway is promoted
by the highly stable heterodimer SMG5–SMG7,48

which interacts with phosphoserines in the C-terminal
region of UPF1. In tethering assays, the C-terminal
portion of SMG7 is sufficient to trigger degradation
of the reporter transcript51,123 and the deadenylase
CNOT8 (POP2) interacts with this C-terminal
proline-rich region of SMG7, indicating that SMG5–
SMG7 recruits the CCR4-NOT complex to NMD
targets to induce their deadenylation-dependent dec-
apping and subsequent XRN1-mediated degrada-
tion.51 Consistently, SMG7-mediated mRNA decay
requires the presence of DCP2 and XRN1 but not of
SMG6.123
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UPF1 also associates with decapping complex
subunits DCP1A, DCP2, and PNRC2, indicating that
direct deadenylation-independent decapping might
constitute a third route to degrade aberrantly termi-
nating mRNAs.124–130 By contacting directly DCP1A
and UPF1, PNRC2 is thought to function as the
bridge between the NMD and the decapping com-
plexes.127,130 Recently, PNRC2 was also claimed to
induce RNA degradation mainly through an interac-
tion with SMG5,127 but others have not been able to
confirm this interaction.51

BIOLOGICAL FUNCTIONS OF NMD

NMD Linked to Alternative Splicing
(AS-NMD) Regulates Gene Expression
Levels by Generating Homeostatic
Feedback Loops
Classically, NMD has been viewed as a quality con-
trol system whose function is to rid mRNAs with pre-
maturely truncated CDS from cells. In mammalian
cells, a large portion of such classical PTC-containing
NMD targets arise by unproductive splicing. While
a part of these NMD substrates arises by genuine
splicing errors due to inherent inaccuracies of the
complex underlying biochemical processes, there
exist a number of well-documented cases where pro-
teins involved in regulating splicing regulate the spli-
cing of their cognate pre-mRNAs.57,131–134 This
results in homeostatic feedback loops in which spli-
cing of the transcript isoform encoding the correct
protein is favored when this protein is at low intracel-
lular concentration, and in which high concentrations
of the protein promote the production of an alterna-
tively spliced isoform that contains a PTC and hence
is degraded by NMD (Figure 3). Besides most SR

proteins, many hnRNPs as well as other proteins
involved in mRNA metabolism were found to regu-
late their own levels in this way. A recent study com-
paring AS-NMD events that are conserved between
human and mouse brain cortex revealed, besides
transcripts involved in mRNA metabolism, a highly
significant enrichment of transcripts encoding chro-
matin modifiers.135

An interesting example of an unusual AS-NMD
circuit was recently reported for HPS1, a subunit of a
guanine nucleotide exchange factor that is essential
for biogenesis of lysosome-related organelles and
mutated in patients with Hermansky–Pudlak syn-
drome136: PTBP1 promotes utilization of an intrinsi-
cally weak 50 splice site in the HPS1 pre-mRNA,
giving rise to stable mRNA encoding full-length
HPS1 protein. Reduced PTBP1 levels lead to prefer-
ential utilization of a stronger 50 splice site further
downstream resulting in an NMD-susceptible tran-
script. This regulatory circuit seems to account for
the tight correlation of HPS1 and PTBP1 expression
levels observed across mammalian tissues. Notewor-
thy, AS-NMD is by no means restricted to mamma-
lian cells, and it was also reported in plants,137

zebrafish,64 and even in S. cerevisiae which in general
shows very little AS.138 Thus, AS-NMD represents a
widespread autoregulatory gene expression
mechanism.

Besides usage of alternative 50 or 30 splice sites
and exon skipping, intron retention in specific subsets
of transcripts has recently been detected to play a
role in various cellular differentiation programs. As
most transcripts with a retained intron are degraded
by NMD, the true extent of intron retention occur-
ring in cells has long been underestimated and
became only apparent by recent deep-sequencing
approaches under NMD-inactivating conditions.139
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For example, it was recently shown that normal
granulopoiesis requires downregulation of the
nuclear protein LMNB1, which occurs by intron
retention and NMD of the resulting aberrant
mRNAs.140

NMD Factor-Encoding mRNA Levels Are
Regulated by NMD
Another form of feedback regulation was discovered
in mRNAs encoding NMD factors, seven of which
were found to be targeted by NMD: UPF1, UPF2,
UPF3B, SMG1, SMG5, SMG6, and SMG7 mRNAs
were upregulated in HeLa cells upon knockdown of
other NMD factors.13,115 All these mRNAs have a
longer than average 30 UTR and some of them also
contain uORFs.13 It was shown that the 30 UTRs of
UPF1, SMG5, and SMG7 and the uORF of SMG5
are indeed sufficient to convert a reporter transcript
into a substrate for the NMD pathway.13,71,115

SMG7 and UPF3 mRNAs in Arabidopsis and SMG5
mRNA in Drosophila have also been reported as
NMD targets,9,141,142 suggesting that NMD regula-
tion by such a feedback control might be evolution-
arily conserved. This autoregulation is most likely
important to buffer NMD activity against environ-
mental changes, ensuring robust and tightly con-
trolled NMD activity under different conditions.

NMD Factors Are Required
for Mammalian Development
Knockouts of several NMD factors have been
attempted in mice but were found to be embryonic
lethal, suggesting that NMD might be essential for
the normal mammalian embryonic development. For
example, homozygous UPF1 knockout mice die
shortly after implantation and preimplantation blas-
tocysts cannot be maintained in culture due to mas-
sive induction of apoptosis.15 Similarly, SMG1-
deficient mouse embryos die around 8.5 days post-
coitum (E8.5) and show severe developmental
defects.143 UPF2 is also required for normal embry-
onic development, because UPF2 knockout mouse
embryos die in utero before E9.5.144 Subsequent con-
ditional UPF2 knockout strategies enabled the study
of UPF2 functions in different tissues and develop-
mental stages. A conditional UPF2 knockout in the
hematopoietic system resulted in a complete loss of
hematopoietic stem and progenitor cell populations
and subsequent death of the mice within 10 days. In
contrast, a specific knockout of UPF2 in the myeloid
linage had no gross phenotypic consequences, sug-
gesting that UPF2 might be more important for

proliferating than for terminally differentiated
cells.144 Specific UPF2 knockout in the liver of mouse
embryos at E10 impaired terminal differentiation of
liver cells and led to postnatal death, and induced
UPF2 knockout in adult mice resulted in extensive
liver damage and impaired regeneration.145 Recently,
an essential role for UPF2 has also been associated
with male fertility. Conditional ablation of UPF2 in
mouse embryonic Sertoli cells caused severe testicular
atrophy, leading to sterility in adulthood.146

SMG6 knockout mice also show early embry-
onic lethality, but using a conditional knockout strat-
egy, SMG6−/− mouse embryonic stem cells (ESCs)
could be generated that proliferated normally and
were morphologically indistinguishable from control
ESCs.147 Interestingly, such cultured SMG6 knock-
out ESCs were unable to undergo differentiation and
retained high expression of pluripotency markers,
and analysis of chimeric mice showed that the
SMG6−/− ESCs failed to differentiate into all three
germ layers. Moreover, this study provided compel-
ling evidence that NMD rather than the attributed
function of SMG6 in telomere maintenance is respon-
sible for controlling ESC differentiation. c-MYC
mRNA was shown to be an NMD target and NMD
inactivation resulted in increased c-MYC protein
levels, which in turn prevented differentiation and
kept the ESCs in their pluripotency stage147

(Figure 4(a)).

NMD Contributes to Brain Development
Another NMD factor whose depletion has been
related to increased self-renewal and altered cell dif-
ferentiation is UPF3B.149 UPF3B knockdown in
E18.5 mouse cortical neuronal progenitor cells
(NPCs) resulted in an increased proliferation capacity
of primary NPCs, at the expense of their differentia-
tion capacity. In primary hippocampal neurons,
UPF3B downregulation resulted in altered neurite
growth, further showing that UPF3B function is also
required in postmitotic neurons. UPF3B knockdown
altered the expression of SIX3 (a master regulator of
cortical development) in NPCs and NRCAM and
ROBO1 (involved in axon guidance and growth) in
hippocampal neurons, genes whose expression is also
deregulated in human patient cells harboring loss-of-
function mutations in UPF3B.150 A recent study sug-
gests that the neurodevelopmental phenotype of
UPF3B missense mutations results from altered neu-
ronal differentiation induced by impaired NMD.151

In rat neural stem cells, the number and complexity
of the branching of neurites was significantly reduced
in cells expressing UPF3B protein mutants found in
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patients with neurodevelopmental disorders. In these
cells, increased expression of endogenous NMD tar-
gets involved in neuronal plasticity and branching
was observed (e.g., ATF4 and ARHGAP24 isoform
1). This work shows that despite the observed down-
regulation of NMD factors during neuronal differen-
tiation, a fully functional NMD machinery appears
to be critical for proper differentiation.151

Evidence that downmodulation of NMD activ-
ity is an essential step in the differentiation of neural
progenitors has recently been reported.148 It was
shown that the abundance of several NMD factors
(UPF1, UPF2, UPF3B, SMG6, and less pronounced
SMG1) was decreased during neuronal differentia-
tion of mouse and human neural stem/progenitor
cells, resulting in a significant reduction of NMD
activity as exemplified by the increased mRNA levels
of several endogenous NMD targets in differentiating
P19 cells (GAS5, ATF3, and GADD45B). Prevention
of UPF1 downregulation by the expression of modest
levels of exogenous UPF1 in differentiating P19 cells
resulted in continued expression of proliferation mar-
kers and prevented the upregulation of neural differ-
entiation markers. Conversely, knockdown of UPF1
was sufficient to elicit the initial steps of neuronal dif-
ferentiation in P19 cells. The authors provided evi-
dence that UPF1 promoted the G1/S cell cycle
transition by eliciting the decay of mRNAs coding
for proliferation inhibitory factors like p21
(CDKN1A), p27 (CDKN1B), p57 (CDKN1C), and
ERK3 (MAPK6) and for neural differentiation fac-
tors like ASCL1 and POU3F2. In addition, several
mRNAs encoding inhibitors of TGF-β signaling were
found to be NMD targets (SMURF1, SMURF2,
SMAD6, and SMAD7). Active TGF-β signaling pro-
motes mesoderm differentiation and its repression
leads to neural differentiation of progenitor cells.152

Consistent with this, UPF1 knockdown reduced the
ability of P19 cells to differentiate to mesoderm lin-
age and instead promoted neural differentiation.
Furthermore, knockdown of SMAD7 prevented the
UPF1 knockdown-induced neuronal differentiation
by rescuing TGF-β signaling, underscoring the view
that NMD controls neuronal differentiation by tar-
geting inhibitors of TGF-β signaling and thus regulat-
ing TGF-β activity.148 A central question in this
regulatory circuit is how NMD activity is regulated
in the first place. It was shown that UPF1 mRNA has
binding sites for the microRNA miR-128 and that in
neuronal precursor cells at the outset of differentia-
tion, induction of miR-128 reduces UPF1 expres-
sion.153 Expression of high levels of a UPF1 mRNA
lacking miR-128-binding sites inhibited the miR-128-
induced neural differentiation of P19 cells and vice

versa, miR-128 expression was strongly induced in
P19 cells upon UPF1 depletion or inhibition of TGF-
β signaling, revealing mutually reinforcing negative
feedback loops that are predicted to form a bistable
circuit153 (Figure 4(b)). Interestingly, this UPF1-
miRNA circuitry appears to be highly conserved and
was recently documented in Xenopus laevis
embryos.148

NMD has also been implicated in commissural
axon guidance in the spinal cord.154 When axons
cross the ventral midline, they are initially attracted
toward the midline by expressing isoform 1 of the
guidance cue receptor Robo3 (Robo3.1). After mid-
line crossing, the axons are repelled from the midline
due to the loss of Robo3.1 expression and the upre-
gulation of the alternatively spliced Robo3.2 isoform.
Robo3.2 mRNA retains an intron that harbors a stop
codon and is therefore a predicted NMD target.
Colak et al. showed that the Robo3.2 mRNA is
selectively trafficked to commissural axons and
remains translationally repressed until the axons are
exposed to floor plate signals in the spinal cord
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FIGURE 4 | Suggested roles for NMD in stem cell differentiation.
(a) NMD promotes the differentiation of ESCs into the three germ
layers, at least partially, by downregulating the mRNA levels of
pluripotency genes, like c-Myc.147 (b) UPF1 promotes the proliferative,
undifferentiated state of neuronal stem cells, by inducing the decay of
mRNAs encoding proneural factors and proliferation inhibitors.
Neuronal differentiation is triggered when a neurogenic signal causes
a rapid increase in the levels of the neuronally expressed miR-128,
which downregulates UPF1 mRNA by binding to the 30 UTR of the
UPF1 mRNA, and consequently represses NMD. UPF1 and miR-128, a
part of a self-reinforcing negative feedback control system, can act as
a molecular switch to lock in the different cellular states.148
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midline. Upon translation, Robo3.2 transcripts are
targeted by NMD, ultimately limiting Robo3.2 pro-
tein levels in postcrossing axons. Using UPF2 condi-
tional knockout mice,144 it was shown that NMD-
deficient postcrossing axons exhibit elevated Robo3.2
levels and over-repulsion from the midline, leading to
aberrant postcrossing axonal trajectories.154 Intri-
guingly, UPF1, UPF2, and SMG1 are also highly
enriched in growth cones of different neurons that do
not express Robo3, suggesting that localized NMD
might play a much broader role in axon physiology
of diverse neuronal types.154

Role of NMD in Modulating the Stress
Response
Transcriptome-wide identification of NMD targets
revealed many mRNAs coding for stress response
factors,7,10,57,58,144 suggesting that NMD may con-
tribute to the regulation of various stress response
pathways (Figure 5). A role of NMD in increasing
the threshold for activation of the unfolded protein
response (UPR) pathway upon endoplasmic reticu-
lum (ER) stress has recently been reported,155 in
agreement with an earlier study documenting an
inverse correlation between UPR and NMD.156

Accumulation of unfolded proteins in the ER lumen
is sensed by the three transmembrane proteins IRE1,

PERK, and ATF6, each of which then activates a net-
work of signaling pathways collectively referred to as
the UPR that ultimately leads to reduced global pro-
tein synthesis, upregulation of folding-promoting
chaperones, and increased capacity to degrade mis-
folded proteins.157 Based on knockdowns of UPF1 or
UPF3 (A and B forms together), 10 NMD-targeted
transcripts encoding UPR components were identi-
fied, among them IRE1α mRNA which was shown to
be an NMD target because of its long 30 UTR.155

The authors suggested that by dampening the levels
of these mRNAs, NMD prevents UPR activation by
innocuous ER stress, whereas strong ER stress signal-
ing represses NMD to ensure the establishment of a
robust adaptive program. Supporting this view, they
demonstrated in UPF3B knockout mice that NMD
deficiency leads to elevated UPR responses after treat-
ment with low doses of the potent ER stress inducer
tunicamycin, whereas high doses of tunicamycin trig-
gered a normal UPR response. Indeed, strong ER
stress suppressed NMD by promoting eIFα2 phos-
phorylation and led to the stabilization of IRE1α
mRNA in human and mouse cells. This study moreo-
ver provided evidence that NMD plays a role in the
timely termination of the UPR and therewith might
protect cells from ER stress-induced apoptosis.155

These findings are supported by a very recent paper
showing that inhibition of NMD increases protein
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IRE1α accumulation and hence a robust UPR activation. Stress-induced inhibition of NMD also results in a higher accumulation of ATF4, a
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synthesis of downstream targets of the IRE1 and
PERK pathways, suggesting a positive feedback loop
in which ER stress dampens NMD, which in turn
promotes the ER stress response.158

Other types of stress like serum starvation,
hypoxia, and osmotic stress also affect NMD activ-
ity, with implications in apoptosis, autophagy, and
amino acid transport.159–161 Although annotated as
noncoding RNA, the prosurvival RNA GAS5 is an
NMD target with short translated ORFs.162,163

UPF1 knockdown or serum starvation, which also
inhibits NMD due to reduced UPF1
phosphorylation,164 both stabilized GAS5 RNA and
so increased its steady-state levels.160 The elevated
GAS5 RNA in turn downregulated apoptosis-related
genes, including the cellular inhibitor of apoptosis
2 (cIAP2) and the serum and glucocorticoid-regulated
kinase 1 (SGK1), and GAS5 knockdown suppressed
the effects of serum starvation on the expression of
the apoptosis-related genes.160 NMD inhibition, by
UPF1 or UPF2 knockdown or by expressing a
dominant-negative UPF1 mutant, was further found
to activate autophagy and augment the intracellular
concentration of certain amino acids.161 Vice versa,
hyperactivation of NMD repressed the induction of
autophagy in response to a variety of cellular stres-
ses, documenting a functional link between an
mRNA and a protein surveillance system. Supporting
the view that induction of autophagy in response to
NMD inhibition represents an adaptive mechanism
to rid the cell of misfolded, mutated, aggregated, and
otherwise deleterious proteins, cells died when NMD
and autophagy were inhibited simultaneously in the
colon cancer cell line HCT116.161 The regulation of
autophagy by NMD is achieved, at least in part,
through the NMD-sensitive ATF4 transcripts, which
directly transactivates the autophagosome membrane
component LC3B and ATG5, an E2 ubiquitin ligase
necessary for autophagy.161 Based on these results,
the authors proposed that co-administration of phar-
macological NMD and autophagy inhibitors could
be a selective and effective chemotherapeutic
regimen.

Among the endogenous NMD targets, there are
also many mRNAs coding for amino acid transpor-
ters.7 Amino acid deprivation is a typical stress in
fast-growing tumor cells and the observed inhibition
of NMD under such conditions appears to be part of
the cell’s adaptive response to increase the intracellu-
lar levels of amino acids, which are used by tumor
cells as energy source and to produce the reduced
oxygen species (ROS) scavenger glutathione from
cysteine.165 Oxidative stress or depletion of UPF1 or
UPF2 upregulated the NMD-sensitive SLC7A11

mRNA, which codes for a subunit of the xCT cys-
tine/glutamate amino acid transport system.159 This
led to an increased intracellular concentration of cys-
teine and glutathione and ultimately protected cells
against oxidative stress.159 This study showed that
NMD inhibition contributes to the survival of cells
exposed to oxidative stress through a mechanism
that completely depends on SLC7A11. Pharmacolog-
ical attenuation of NMD using the NMD inhibitor
NMDI 1166 was recently shown to facilitate the
response of cancer cells to the topoisomerase inhibi-
tor doxorubicin, a widely used anticancer drug.167

Doxorubicin induces double-stranded DNA breaks
and severe DNA damage subsequently leads to apop-
tosis, a controlled cell suicide program that involves
caspase-mediated cleavage of many intracellular pro-
teins. Among those proteins, UPF1 and UPF2 were
found to be cleaved by caspases 3 and/or 7.167,168

The cleavage of UPF1 at aspartate 37 (D37) gener-
ates a dominant-interfering truncated form of UPF1
that inhibits NMD and leads to the upregulation of
several mRNAs encoding factors promoting cell cycle
arrest and apoptosis.167 Accordingly, expression of a
caspase cleavage-resistant form of UPF1 (D37N)
blunted the efficacy of doxorubicin to induce apopto-
sis in cancer cells.167 These studies suggest that
NMD functions in a proapoptotic reinforcing mech-
anism, in which apoptosis induces NMD inhibition
and caspase-cleaved UPF fragments promote apopto-
sis168 (Figure 5).

Roles of NMD Factors in Viral
Replication
RNA viruses are dependent on mRNA processing,
mRNP remodeling, and translation by the respective
host cell machineries, begging the question of
whether NMD also affects the life cycle of such
viruses. With their multicistronic gene organization,
the genomic RNA of RNA viruses often have stop
codons in places where one would expect them to
trigger NMD, for example, in the middle of the RNA
leaving a long 30 UTR. In plants, where the RNAi
pathway is well known to restrict RNA virus
replication,169 a genetic screen carried out with a
recombinant GFP-expressing potato virus X (PVX)
in Arabidopsis attenuated for RNAi to uncover addi-
tional host restriction mechanism revealed that NMD
targets PVX and restricts its replication.170 The
authors showed that two of the subgenomic PVX
RNAs, both with long 30 UTRs, are targeted by
NMD. Moreover, overexpression of an NMD sup-
pressing dominant-negative UPF1 mutant in tobacco
plants also led to the accumulation of genomic RNA
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of the Turnip crinkle virus (TCV), another (+)strand
virus, suggesting that restriction of (+)strand RNA
viruses might be a general function of NMD.170

Supporting this view, NMD has also been found to
restrict the replication of two closely related mamma-
lian alphaviruses, Semliki forest virus (SFV) and
Sindbis virus (SINV)171 (Figure 6). For SFV, it was
shown that UPF1 knockdown increased the half-life
of the genomic viral RNA. Surprisingly however,
shortening of the long 30 UTR in SFV still resulted in
an UPF1-dependent restriction of the virus-like parti-
cles, indicating that in this particular case the 30 UTR
might not be the NMD-triggering feature.171 Besides
UPF1, SMG5 and SMG7 were documented to also
play a role in SFV restriction in this study.

If NMD indeed plays a general role in protect-
ing cells from viruses, one would expect that many
viruses have evolved countermeasures to evade or
inhibit NMD. As already mentioned, an RSE that
protects the unspliced transcript of the avian retrovi-
rus RSV from degradation by the NMD pathway has
been described.75,172 The RSE is located just down-
stream of the stop codon of the gag ORF and its
deletion or mutation rendered the RSV unspliced
RNA sensitive to NMD. RSV insertion downstream
of the PTC of NMD reporter genes rendered these
reporter transcripts immune to NMD in a position-
dependent manner.172 The 400 nucleotides RSV RSE
contains 11 CU-rich clusters, which are binding sites
for PTBP1, and they were recently shown to be nec-
essary and sufficient for suppressing NMD.76 The

authors showed that PTBP1 binding prevented the
interaction of UPF1 with the 30 UTR regions of oth-
erwise NMD-sensitive transcripts and revealed a
genome-wide correlation between PTBP1 enrichment
near stop codons, 30 UTR length, and resistance to
NMD.76

An alternative viral strategy to evade NMD is
to directly inhibit the NMD pathway. Two viruses
that appear to have chosen this strategy are human-
T-cell leukemia virus type I (HTLV-1)173 and hepati-
tis C virus (HCV).174 The genomic and full-length
mRNAs of HTLV-1, a retrovirus causing adult T-cell
leukemia, are sensitive to NMD, but expression of
the viral RNA-binding protein Rex was found to
inhibit NMD.173 In the presence of Rex, not only
viral transcripts were stabilized but also known
NMD reporters and endogenous NMD-sensitive
mRNAs, suggesting that Rex causes a general block
of NMD. How exactly Rex inhibits NMD is not yet
known. Similarly, a recent study reports that NMD
is disrupted in HCV-infected hepatoma cells, leading
to the accumulation of potentially harmful tran-
scripts.174 In an affinity purification coupled to mass
spectrometry approach, the authors identified the
partner of Y14 and MAGOH (PYM) as an interactor
of the viral core protein and showed that expression
of HCV core protein reduced PYM interaction with
the two EJC factors Y14 and MAGOH. PYM has
been shown to promote EJC dissociation from
mRNA during translation175 and the authors specu-
late that HCV core protein-mediated sequestration of
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PYM might interfere with NMD by preventing the
cytoplasmic release of EJCs and the recycling of the
EJC factors back to the nucleus, leading to reduced
EJC deposition on newly synthesized mRNAs in
HCV-infected cells.174

Finally, rather than protecting the cell from the
virus as in the examples above, UPF1 was also
reported to promote export of unspliced genomic
RNA in the case of human immunodeficiency virus
(HIV).176,177 HIV-1 RNPs were found to contain
UPF1 along with the double-stranded RNA-binding
protein Staufen1 and the viral factor pr55Gag.177

UPF1 depletion resulted in a reduction and its over-
expression in an upregulation of HIV-1 RNA, respec-
tively.177 The finding that UPF1 decrease rather
increased HIV-1 RNA levels and that the UPF1-
mediated effect was independent of UPF2 strongly
suggested that the underlying mechanism is unrelated
to NMD. Instead, using Rev-deficient constructs, the
authors recently showed that recruitment of UPF1 to
these nuclear retained transcripts promotes their
CRM1-dependent export to the cytoplasm.176 UPF1
remains associated with HIV-1 RNA in the cyto-
plasm and together with other cellular RNA-binding
proteins, UPF1 is packed into the HIV-1 virions and
was shown to be crucial for the infectivity of the
virus.178 Available evidence suggests that UPF1 func-
tions at the step of reverse transcription and that this
function requires the helicase activity of UPF1, but
the exact mechanism is not yet understood.178

FUTURE DIRECTIONS

There are many central questions regarding mecha-
nistic aspects of NMD that are not yet understood. A
particularly burning question concerns the substrate

specificity of NMD, i.e., to understand what makes
some mRNAs a substrate for NMD and not others.
The currently prevailing view that it has to do with
kinetic and/or mechanistic differences during transla-
tion termination is supported by a fair amount of
indirect evidence, but compelling direct evidence is
scarce. Mechanistic studies are hampered by the lack
of an in vitro system that can recapitulate NMD and
would allow systematic manipulation and titration of
the involved factors.

With the discovery that besides aberrant PTC-
containing transcripts, the stability of many appar-
ently normal, PTC-less mRNAs is also controlled at
least in part by NMD, the classical and name-giving
definition of NMD became misleading and a new
commonly accepted operational definition of NMD
based on a consensus set of easily testable criteria is
needed. Until we have a better understanding, a new
definition should also consider that the phenomenon
commonly called NMD might actually result from
several different but overlapping decay pathways. A
possible operational definition for NMD based on
the current literature could be ‘translation-dependent
mRNA degradation that requires UPF1 and in
metazoans additionally SMG1 and SMG6 or SMG7.’

The discovery of a large number of mostly PTC-
free endogenous NMD-targeted mRNAs opened a
whole new area of research investigating how NMD
is involved in the regulation of which biological pro-
cesses. This research has just begun and the examples
described above presumably only represent the tip of
the iceberg. A look into the long lists of mRNAs iden-
tified by genome-wide approaches as putative NMD
targets indicates possible roles for NMD-mediated
gene regulation in a wide variety of biological con-
texts. Therefore, stay tuned for future surprises.
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